Answer:
B. The buoyant force on the copper block is greater than the buoyant force on the lead block.
Explanation:
Given;
mass of lead block, m₁ = 200 g = 0.2 kg
mass of copper block, m₂ = 200 g = 0.2 kg
density of water, ρ = 1 g/cm³
density of lead block, ρ₁ = 11.34 g/cm³
density of copper block, ρ₂ = 8.96 g/cm³
The buoyant force on each block is calculated as;
[tex]F_B = mg(\frac{density \ of \ fluid}{density \ of \ object} )[/tex]
The buoyant force of lead block;
[tex]F_{lead} = 0.2*9.8(\frac{1}{11.34} )\\\\F_{lead} = 0.173 \ N[/tex]
The buoyant force of copper block
[tex]F_{copper} = 0.2*9.8(\frac{1}{8.96})\\\\F_{copper} = 0.219 \ N[/tex]
Therefore, the buoyant force on the copper block is greater than the buoyant force on the lead block