A dentist using a dental drill brings it from rest to maximum operating speed of 391,000 rpm in 2.8 s. Assume that the drill accelerates at a constant rate during this time.
(a) What is the angular acceleration of the drill in rev/s2?
rev/s2
(b) Find the number of revolutions the drill bit makes during the 2.8 s time interval.
rev

Respuesta :

Answer:

a

    [tex]\alpha = 2327.7 \ rev/s^2[/tex]

b

   [tex]\theta = 9124.5 \ rev[/tex]

Explanation:

From the question we are told that

    The maximum  angular   speed is  [tex]w_{max} = 391000 \ rpm = \frac{2 \pi * 391000}{60} = 40950.73 \ rad/s[/tex]

     The  time  taken is  [tex]t = 2.8 \ s[/tex]

     The  minimum angular speed is  [tex]w_{min}= 0 \ rad/s[/tex] this is because it started from rest

     

Apply the first equation of motion to solve for acceleration we have that

       [tex]w_{max} = w_{mini} + \alpha * t[/tex]

=>     [tex]\alpha = \frac{ w_{max}}{t}[/tex]

substituting values

       [tex]\alpha = \frac{40950.73}{2.8}[/tex]

       [tex]\alpha = 14625 .3 \ rad/s^2[/tex]

converting to [tex]rev/s^2[/tex]

  We have

           [tex]\alpha = 14625 .3 * 0.159155 \ rev/s^2[/tex]

           [tex]\alpha = 2327.7 \ rev/s^2[/tex]

According to the first equation of motion the angular displacement is  mathematically represented as

       [tex]\theta = w_{min} * t + \frac{1}{2} * \alpha * t^2[/tex]

substituting values

      [tex]\theta = 0 * 2.8 + 0.5 * 14625.3 * 2.8^2[/tex]

      [tex]\theta = 57331.2 \ radian[/tex]

converting to revolutions  

        [tex]revolution = 57331.2 * 0.159155[/tex]

        [tex]\theta = 9124.5 \ rev[/tex]