Respuesta :

Let S denote the sum

[tex]1\cdot3+2\cdot4+3\cdot5+\cdots+n\cdot(n+2)[/tex]

We can condense this to sigma notation:

[tex]S=\displaystyle\sum_{k=1}^nk(k+2)[/tex]

Expand the summand:

[tex]S=\displaystyle\sum_{k=1}^nk^2+2\sum_{k=1}^nk[/tex]

Recall the Faulhaber formulas,

[tex]\displaystyle\sum_{k=1}^nk=\frac{n(n+1)}2[/tex]

[tex]\displaystyle\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}6[/tex]

So we have

[tex]S=\dfrac{n(n+1)(2n+1)}6+n(n+1)=\boxed{\dfrac{n(n+1)(2n+7)}6}[/tex]