Respuesta :

Answer:

[tex]1<x<3[/tex]

Step-by-step explanation:

Given

[tex](x +1 <4)\ n\ (X-8 >-7)[/tex]

Required

Solve

To start with, we need to solve the inequalities as separate entities

[tex](x +1 <4)\ n\ (X-8 >-7)[/tex]

[tex]x +1 <4[/tex]

Subtract 1 from both sides

[tex]x +1 -1 <4 -1[/tex]

[tex]x <4 -1[/tex]

[tex]x<3[/tex]

[tex]x-8 >-7[/tex]

Add 8 t both sides

[tex]x-8+8 >-7+8[/tex]

[tex]x >-7+8[/tex]

[tex]x >1[/tex]

[tex](x +1 <4)\ n\ (X-8 >-7)[/tex] becomes

[tex]x < 3\ n\ x>1[/tex]

This means that x is less than 3 and greater than 1;

In other words, x is 2

The expression [tex]x < 3\ n\ x>1[/tex] can be rewritten as

[tex]x < 3\ n\ 1<x[/tex]

Combining these results; we have

[tex]1<x<3[/tex]