The diagram shows triangle ABC with D on AC and E on AB. DE is a straight line. AD = 27 m, AE = 39 m, DE = 23m and BC = 65 m. Calculate the length CD.

The diagram shows triangle ABC with D on AC and E on AB DE is a straight line AD 27 m AE 39 m DE 23m and BC 65 m Calculate the length CD class=

Respuesta :

Similar triangles may or may not be congruent

The length of CD is 49 units.

From the given triangles, we have the following equivalent ratios

[tex]\mathbf{AD:DE = AC:CB}[/tex]

Where:

[tex]\mathbf{AC = AD + CD}[/tex]

So, we have:

[tex]\mathbf{AD:DE = AD + DC:CB}[/tex]

Substitute known values

[tex]\mathbf{27:23 = 27 + DC:65}[/tex]

Express as fraction

[tex]\mathbf{\frac{27}{23} = \frac{27 + DC}{65}}[/tex]

Multiply both sides by 65

[tex]\mathbf{\frac{27}{23} \times 65= 27 + DC}[/tex]

Subtract 27 from both sides

[tex]\mathbf{\frac{27}{23} \times 65- 27 = DC}[/tex]

[tex]\mathbf{\frac{27\times 65}{23} - 27 = DC}[/tex]

[tex]\mathbf{\frac{1755}{23} - 27 = DC}[/tex]

[tex]\mathbf{76 - 27 = DC}[/tex]

[tex]\mathbf{49 = DC}[/tex]

Rewrite as:

[tex]\mathbf{CD = 49}[/tex]

Hence, the length of CD is 49 units.

Read more about similar shapes at:

https://brainly.com/question/14926756