Respuesta :

Answer:

5

Step-by-step explanation:

[tex] \because {(x + y)}^{2} = {x}^{2} + {y}^{2} + 2xy \\ \therefore \: {(5)}^{2} = {x}^{2} + {y}^{2} + 2 \times 10 \\ \therefore \: 25 = {x}^{2} + {y}^{2} + 20 \\ \therefore \: 25 - 20 = {x}^{2} + {y}^{2} \\ \huge \red{ \boxed{ \therefore \: {x}^{2} + {y}^{2} = 5}}[/tex]

Answer:

Option 1

Step-by-step explanation:

The formula is:

[tex](x+y)^2 = x^2+y^2+2xy[/tex]

Putting x+y = 5, xy = 10

=> (5)² = x²+y²+2(10)

=> 25 = x²+y²+20

=>  x²+y² = 25 - 20

=>  x²+y² = 5