Answer:
(D)
[tex]\overrightarrow{TM} = < 1, -1, 5 >\\|TM|= 3\sqrt{3}[/tex]
Step-by-step explanation:
Given T(-2,4,7) and M(-3,5,2)
[tex]\overrightarrow{TM} = \underline{m} - \underline{t}[/tex] where m and t are position vectors. [tex]= <- 2, 4, 7 > - < -3, 5, 2> $ (Subtract corresponding components )$\\= < -2+3, 4- 5, 7-2 >\\= < 1, -1, 5 >[/tex]
Given v=<x,y,z>, then the magnitude of v is:
[tex]|v| = \sqrt{x^2+y^2+z^2}, $thus$\\|TM| = \sqrt{(1)^2+(-1)^2+(5)^2}\\= \sqrt{1+1+25}\\ = \sqrt{27} \\= \sqrt{9*3} \\|TM|= 3\sqrt{3}[/tex]