Answer:
[tex] \boxed{Values \: true \: of \: 'x' \: for \: equation \: {x}^{2} + 2x = 24 \: is \: -6 \: and \: 4} [/tex]
Step-by-step explanation:
[tex] = > {x}^{2} + 2x = 24 \\ \\ = > {x}^{2} + 2x - 24 = 0 \\ \\ = > {x}^{2} + (6 - 4)x - 24 = 0 \\ \\ = > {x}^{2} + 6x - 4x - 24 = 0 \\ \\ = > x(x + 6) - 4(x + 6) = 0 \\ \\ = > (x + 6)(x - 4) = 0 \\ \\ = > x + 6 = 0 \: \: \: \: \: \: \: \: and \: \: \: \: \: \: \: \: \: x - 4 = 0 \\ \\ = > x = - 6 \: \: \: \: \: \: \: \: \: \: and \: \: \: \: \: \: \: \: \: x = 4[/tex]
Values true of 'x' for equation x² + 2x = 24 is -6 and 4