A 5.5-kW water heater operates at 240 V.

i. Should the heater circuit have a 20A or a 30A circuit breaker? [2 marks]

ii. Assuming 85% efficiency, how long will the heater take to heat the water in

a 0.2085-m3 tank from 20°C to 80°C? The density of water is 1,000 kg/m3

and the specific heat capacity is 4,200 J/kg/°C. ​

Respuesta :

Answer:

The time taken is  [tex]t = 11.23 \ sec[/tex]  

Explanation:

From the question we are told

      The power the water is [tex]P = 5.5KW = 5.5 *10^ {3} W[/tex]

      The the voltage  of the heater is  is  [tex]V = 240 V[/tex]

       The volume of the heater  [tex]Z = 0.2085\ m^3[/tex]

        The specific heat of water is  [tex]c_w = 4200 J /kg/^oC[/tex]

         The initial temperature is [tex]T_1 = 20^oC[/tex]

        The final temperature is [tex]T_2 = 80^oC[/tex]

         The density of water is  [tex]\rho_w = 1000 \ kg/m^3[/tex]

The current of the heater is mathematically represented as

            [tex]I = \frac{P}{V }[/tex]

substituting values we have

           [tex]I = \frac{5.5 *10^{3}}{240}[/tex]

           [tex]I = 22.91 \ A[/tex]

So since the current produced is greater than 20 A hence the heater current rating would be 30A

      The quantity of heat required to heat the water is mathematically represented as

       [tex]Q = m c_w \Delta T[/tex]

Where m is the mass which is mathematically evaluated as

         [tex]m = \rho_w * Z[/tex]

         [tex]m =1000 * 0.2085[/tex]

         [tex]m =208.5 \ kg[/tex]

Therefore  

                 [tex]Q = 208.5 * 4.200 * (80 - 20)[/tex]

                [tex]Q = 52542 J[/tex]

Since the heater has an  efficiency then the heat generate by the heater is  

          [tex]Q_h = \frac{52542}{0.85}[/tex]

          [tex]Q_h =61814.1 J[/tex]

Now Power is mathematically  represented as

         [tex]P = \frac{Q}{t}[/tex]

Where t is the time taken for heater to heat the water

=>      [tex]t = \frac{Q}{P}[/tex]

Substituting values  

          [tex]t = \frac{61814.1}{5.5*10^{3}}[/tex]

          [tex]t = 11.23 \ sec[/tex]