Answer: The current must be equal to [tex]\frac{\sqrt{33} }{6}[/tex] amps, or ~0.9574 amps.
Explanation:
You can find the current in amperes using ohms and watts from this formula:
[tex]I = \sqrt{\frac{P}{R} }[/tex]
Where P represents power in watts, R represents resistance in ohms, and I represents current in amperes.
You can then substitute 60 and 55 into the equation to find I:
[tex]I = \sqrt{\frac{55}{60} } \\I = \frac{\sqrt{55} }{\sqrt{60} }[/tex]
Then, simplify the denominator:
[tex]I = \frac{\sqrt{55} }{2\sqrt{15} }[/tex]
Rationalize the denominator:
[tex]I = \frac{\sqrt{55} }{2\sqrt{15} } * \frac{\sqrt{15} }{\sqrt{15} } = \frac{\sqrt{825} }{30}[/tex]
Simplify the numerator by finding its factors:
[tex]I = \frac{5\sqrt{33} }{30} = \frac{\sqrt{33} }{6}[/tex]
The current must be equal to [tex]\frac{\sqrt{33} }{6}[/tex] amps, or ~0.9574 amps.