Answer:
7.15
Explanation:
Firstly, the COP of such heat pump must be measured that is,
[tex]COP_{HP}=\frac{T_H}{T_H-T_L}[/tex]
Therefore, the temperature relationship, [tex]T_H=1.15\;T_L[/tex]
Then, we should apply the values in the COP.
[tex]=\frac{1.15\;T_L}{1.15-1}[/tex]
[tex]=7.67[/tex]
The number of heat rejected by the heat pump must then be calculated.
[tex]Q_H=COP_{HP}\times W_{nst}[/tex]
[tex]=7.67\times5=38.35[/tex]
We must then calculate the refrigerant mass flow rate.
[tex]m=0.264\;kg/s[/tex]
[tex]q_H=\frac{Q_H}{m}[/tex]
[tex]=\frac{38.35}{0.264}=145.27[/tex]
The [tex]h_g[/tex] value is 145.27 and therefore the hot reservoir temperature is 64° C.
The pressure at 64 ° C is thus 1849.36 kPa by interpolation.
And, the lowest reservoir temperature must be calculated.
[tex]T_L=\frac{T_H}{1.15}[/tex]
[tex]=\frac{64+273}{1.15}=293.04[/tex]
[tex]=19.89\°C[/tex]
the lowest reservoir temperature = 258.703 kpa
So, the pressure ratio should be = 7.15