Respuesta :

Answer:

Inverse of f(x)

               [tex]f^{l} (x) = \frac{8 x}{3-x}[/tex]

Step-by-step explanation:

Explanation:-

Step(i):-

Given the function

                        [tex]f(x) = \frac{3 x}{8+x}[/tex]

Given function is one-one and onto function

Hence f(x) is bijection function

                   [tex]y = f(x) = \frac{3 x}{8+x}[/tex]

now cross multiplication, we get

            ( 8+x)y = 3 x

             8 y + x y = 3 x

             8 y = 3 x - x y

taking Common 'x' we get

            x (3 - y) = 8 y

                   [tex]x = \frac{8 y}{3-y}[/tex]

Step(ii):-

The inverse function

                 [tex]x = \frac{8 y}{3-y} = f^{l}(y)[/tex]

The inverse function of x

                  [tex]f^{l}(x) = \frac{8 x}{3-x}[/tex]

Final answer:-

Inverse of f(x)

               [tex]f^{l} (x) = \frac{8 x}{3-x}[/tex]