Respuesta :

Answer:

[tex]x=0.75 \,\,or \,\, x=\frac{4}{3}[/tex]

Step-by-step explanation:

Recall the quadratic formula that applies for the solutions to a quadratic equation of the form: [tex]ax^2+bx+c=0[/tex]

which gives the solutions for possible x values as:

[tex]x=\frac{-b+/-\sqrt{b^2-4ac} }{2a}[/tex]

Therefore, for our case we have:

[tex]x=\frac{-b+/-\sqrt{b^2-4ac} }{2a} \\x=\frac{25+/-\sqrt{25^2-4(12)(12)} }{2(12)} \\x=\frac{25+/-\sqrt{49} }{24} \\x=\frac{25+/-7 }{24} \\x=0.75 \,\,or \,\, x=\frac{4}{3}[/tex]