Respuesta :
Answer:
> [tex](4^6)^{-3}[/tex] = [tex]\frac{1}{4 ^ {18}}[/tex]
> [tex](4^{-3})^{-3}[/tex] = [tex]4 ^ 9[/tex]
> [tex](4^0)^{-9}[/tex] = [tex]4 ^0[/tex]
> [tex](-4^{-9})^2[/tex] = [tex](-4) ^ {-18}[/tex]
Step-by-step explanation:
We have to expand the powers of each of them:
> [tex](4^6)^{-3}[/tex] = [tex]4^{(6 * -3)}[/tex]
= [tex]4 ^ {-18}[/tex]
[tex](4^6)^{-3}[/tex] = [tex]\frac{1}{4 ^ {18}}[/tex]
> [tex](4^{-3})^{-3}[/tex] = [tex]4 ^ {(-3 * -3)}[/tex]
[tex](4^{-3})^{-3}[/tex] = [tex]4 ^ 9[/tex]
> [tex](4^0)^{-9}[/tex] = [tex]4 ^ {(0 * -9)}[/tex]
[tex](4^0)^{-9}[/tex] = [tex]4 ^0[/tex]
> [tex](-4^{-9})^2[/tex] = [tex]-4 ^ {( -9 * 2)}[/tex]
[tex](-4^{-9})^2[/tex] = [tex]-4 ^ {-18}[/tex]
Answer:
(4^6)^-3 = 1/4^18
(4^0)^-9 = 4^0
(4^-3)^-3 = 4^9
(-4^9)^2= (-4)^18
Step-by-step explanation:
(4^6)^-3 = 1/4^18
(4^6)^-3= 4^(6*-3)
(4^6)^-3= 1/4^18
(4^0)^-9 = 4^0
(4^0)^-9 = 4^(0*-9)
(4^0)^-9= 4^0
(4^-3)^-3 = 4^9
(4^-3)^-3= 4 ^ (-3*-3)
(4^-3)^-3 = 4^(9)
(-4^9)^2= (-4)^18
(-4^9)^2= -4^(9*2)
(-4^9)^2=(-4)^18