Match each power of a power expression with its simplified expression.


(4^6)^-3

(4^-3)^-3

(4^0)^-9

(-4^-9)^2



(-4)^18

4^9

4^0

1/4^18


Respuesta :

Answer:

> [tex](4^6)^{-3}[/tex] = [tex]\frac{1}{4 ^ {18}}[/tex]

> [tex](4^{-3})^{-3}[/tex] = [tex]4 ^ 9[/tex]

> [tex](4^0)^{-9}[/tex] = [tex]4 ^0[/tex]

> [tex](-4^{-9})^2[/tex] = [tex](-4) ^ {-18}[/tex]

Step-by-step explanation:

We have to expand the powers of each of them:

> [tex](4^6)^{-3}[/tex] = [tex]4^{(6 * -3)}[/tex]

          = [tex]4 ^ {-18}[/tex]

[tex](4^6)^{-3}[/tex] = [tex]\frac{1}{4 ^ {18}}[/tex]

> [tex](4^{-3})^{-3}[/tex] = [tex]4 ^ {(-3 * -3)}[/tex]

  [tex](4^{-3})^{-3}[/tex] = [tex]4 ^ 9[/tex]

> [tex](4^0)^{-9}[/tex] = [tex]4 ^ {(0 * -9)}[/tex]

  [tex](4^0)^{-9}[/tex] = [tex]4 ^0[/tex]

> [tex](-4^{-9})^2[/tex] = [tex]-4 ^ {( -9 * 2)}[/tex]

  [tex](-4^{-9})^2[/tex] = [tex]-4 ^ {-18}[/tex]

Answer:

(4^6)^-3 = 1/4^18

(4^0)^-9 = 4^0

(4^-3)^-3 = 4^9

(-4^9)^2= (-4)^18

Step-by-step explanation:

(4^6)^-3 = 1/4^18

(4^6)^-3= 4^(6*-3)

(4^6)^-3= 1/4^18

(4^0)^-9 = 4^0

(4^0)^-9 = 4^(0*-9)

(4^0)^-9= 4^0

(4^-3)^-3 = 4^9

(4^-3)^-3= 4 ^ (-3*-3)

(4^-3)^-3 = 4^(9)

(-4^9)^2= (-4)^18

(-4^9)^2= -4^(9*2)

(-4^9)^2=(-4)^18