URGENT!!
For triangle ABC, if the measure of angle A is 60° and the measure of angle B is 45°, and the measure of side b, opposite angle B, is 12cm, find, to the nearest tenth of a cm, the measure of side a.

A. 14.7cm
B. 9.8cm
C. 8.5cm
D. 17.0cm

Respuesta :

Answer:

A. 14.7cm

Step-by-step explanation:

In Triangle ABC

[tex]\angle A=60^\circ\\\angle B=45^\circ\\b=12cm[/tex]

We are to determine the measure of side a.

Using Law of Sines

[tex]\dfrac{a}{\sin A}= \dfrac{b}{\sin B}\\\dfrac{a}{\sin 60^\circ}= \dfrac{12}{\sin 45^\circ}\\\\$Cross multiply\\a*sin 45^\circ=12*\sin 60^\circ\\$Divide both sides by sin 45^\circ\\\dfrac{a*sin 45^\circ}{sin 45^\circ}= \dfrac{12*\sin 60^\circ}{\sin 45^\circ}\\\\a=14.7$ cm (to the nearest tenth of a cm)[/tex]

The correct option is A.

Answer:

A. 14.7 cm

Step-by-step explanation:

To find the measure of side a, we will simply use the sine formula

[tex]\frac{sin A}{a}[/tex]   =  [tex]\frac{sin B}{b}[/tex]

where A,B are angles and   a,b  are sides of the triangle

from the question given, angle A = 60°        angle B = 45°     b = 12cm      a = ?

[tex]\frac{sin 60}{a}[/tex]  =  [tex]\frac{sin 45}{12}[/tex]

cross-multiply

a sin45 = 12 sin60

Divide both-side by sin 45

a = 12 sin 60/ sin45

a ≈ 14.7  cm