Respuesta :
Answer:
A. 14.7cm
Step-by-step explanation:
In Triangle ABC
[tex]\angle A=60^\circ\\\angle B=45^\circ\\b=12cm[/tex]
We are to determine the measure of side a.
Using Law of Sines
[tex]\dfrac{a}{\sin A}= \dfrac{b}{\sin B}\\\dfrac{a}{\sin 60^\circ}= \dfrac{12}{\sin 45^\circ}\\\\$Cross multiply\\a*sin 45^\circ=12*\sin 60^\circ\\$Divide both sides by sin 45^\circ\\\dfrac{a*sin 45^\circ}{sin 45^\circ}= \dfrac{12*\sin 60^\circ}{\sin 45^\circ}\\\\a=14.7$ cm (to the nearest tenth of a cm)[/tex]
The correct option is A.
Answer:
A. 14.7 cm
Step-by-step explanation:
To find the measure of side a, we will simply use the sine formula
[tex]\frac{sin A}{a}[/tex] = [tex]\frac{sin B}{b}[/tex]
where A,B are angles and a,b are sides of the triangle
from the question given, angle A = 60° angle B = 45° b = 12cm a = ?
[tex]\frac{sin 60}{a}[/tex] = [tex]\frac{sin 45}{12}[/tex]
cross-multiply
a sin45 = 12 sin60
Divide both-side by sin 45
a = 12 sin 60/ sin45
a ≈ 14.7 cm