Recall the Laplace transform of a second-order derivative,
[tex]L(y''(t)) = s^2Y(s)-sy(0)-y'(0)[/tex]
and the transform of cosine,
[tex]L(\cos(at))=\dfrac s{a^2+s^2}[/tex]
Here, both [tex]y(0)=y'(0)=0[/tex], so taking the transform of both sides of
[tex]y''(t)+36y(t)=2\cos(6t)[/tex]
gives
[tex]s^2Y(s)+36Y(s)=\dfrac{2s}{36+s^2}[/tex]
[tex]\implies Y(s)=\dfrac{2s}{(s^2+36)^2}[/tex]