Respuesta :

Answer:

[tex]x=\frac{3}{2}+i\frac{\sqrt{23}}{2},\:x=\frac{3}{2}-i\frac{\sqrt{23}}{2}[/tex]

Step-by-step explanation:

[tex]x^2-3x=-8[/tex]

[tex]x^2-3x+8=-8+8[/tex]

[tex]x^2-3x+8=0[/tex]

[tex]\frac{-\left(-3\right)+\sqrt{\left(-3\right)^2-4\cdot \:1\cdot \:8}}{2\cdot \:1}[/tex]

[tex]=\frac{3+\sqrt{\left(-3\right)^2-4\cdot \:1\cdot \:8}}{2\cdot \:1}[/tex]

[tex]\sqrt{\left(-3\right)^2-4\cdot \:1\cdot \:8}[/tex]

[tex]=\sqrt{-23}[/tex]

[tex]=\sqrt{23}i[/tex]

[tex]=\frac{3+\sqrt{23}i}{2}[/tex]

[tex]=\frac{3}{2}+\frac{\sqrt{23}}{2}[/tex]

[tex]\frac{-\left(-3\right)-\sqrt{\left(-3\right)^2-4\cdot \:1\cdot \:8}}{2\cdot \:1}[/tex]

[tex]=\frac{3-\sqrt{\left(-3\right)^2-4\cdot \:1\cdot \:8}}{2\cdot \:1}[/tex]

[tex]3-\sqrt{\left(-3\right)^2-4\cdot \:1\cdot \:8}[/tex]

[tex]=\sqrt{-23}[/tex]

[tex]=\sqrt{23}i[/tex]

[tex]=3-\sqrt{23}i[/tex]

[tex]=\frac{3-\sqrt{23}i}{2}[/tex]

[tex]=\frac{3}{2}-\frac{\sqrt{23}}{2}i[/tex]

[tex]x=\frac{3}{2}+i\frac{\sqrt{23}}{2},\:x=\frac{3}{2}-i\frac{\sqrt{23}}{2}[/tex]