Which of the following statements about hybridization are true? Select all that apply: Hybrid orbitals exist in isolated atoms. Hybrid orbitals within the same atom have the same energy and shape. Hybrid orbitals are described mathematically as a linear combination of atomic orbitals. An atom can have both hybridized and unhybridized orbitals at the same time.

Respuesta :

Answer:

True:

  • Hybrid orbitals within the same atom have the same energy and shape.
  • Hybrid orbitals are described mathematically as a linear combination of atomic orbitals.
  • An atom can have both hybridized and unhybridized orbitals at the same time.

Explanation:

Hybrid orbitals do not exist in isolated atoms. They form only in covalently bonded atoms.

Hybridization happens when several atomic orbitals combine to form other orbitals with the same energy and greater stability.

A set of hybrid orbitals is generated by combining atomic orbitals. The number of hybrid orbitals in a set is equal to the number of atomic orbitals that combined to produce the set.

Hybrid orbitals overlap to form σ bonds. Unhybridized orbitals overlap to form π bonds, and both can appear in an atom at the same time.

Lanuel

The statements about hybridization that are true include:

B. Hybrid orbitals within the same atom have the same energy and shape.

C. Hybrid orbitals are described mathematically as a linear combination of atomic orbitals.

D. An atom can have both hybridized and unhybridized orbitals at the same time.

A sublevel is an energy level that is typically associated with the valence electrons found outside an atomic nucleus.

In Chemistry, there are four (4) types of sublevel and these includes:

I. s orbital (sublevel): it has one (1) orbital i.e 1s.

II. p orbital (sublevel): it has three (3) orbitals.

III. d orbital (sublevel): it has five (5) orbitals.

IV. f orbital (sublevel): it has seven (7) orbitals.

Hybridization can be defined as a phenomenon which involves the linear combination of two or more atomic orbitals of a molecule, so as to form the same number of hybrid orbitals, with each of the orbital having the same energy and shape.

Generally, the two types of hybridization an atom can have include:

1. Hybridized orbitals.

2. Unhybridized orbitals

Hence, we can deduce the following points from the above:

  • Hybrid orbitals of the same atom of a chemical molecule have the same energy and shape.
  • Hybrid orbitals can be described mathematically as a linear combination of multiple atomic orbitals.
  • An atom of a chemical element can have both hybridized and unhybridized orbitals at the same time.

Read more: https://brainly.com/question/24403297