In the figure below, if C is the center of the circle and 30 < C < 60, then which of the following expresses all possible values of a?




Select one:

A. 50 < a < 70

B. 60 < a < 70

C. 60 < a < 75

D. 75 < a < 90

E. 100 < a < 115

In the figure below if C is the center of the circle and 30 lt C lt 60 then which of the following expresses all possible values of aSelect oneA 50 lt a lt 70B class=

Respuesta :

Answer:

Option C.

Step-by-step explanation:

In the given figure C is the center of the circle.  

Let A and B are two points on the circle, such that

[tex]\angle A=a^{\circ},\angle B=b^{\circ}[/tex]

Since CA and CB are radius of the circle, therefore ABC is an isosceles triangle.

[tex]\angle A=\angle B=a^{\circ}[/tex]

Using angle sum property,

[tex]\angle A+\angle B+\angle C=180^{\circ}[/tex]

[tex]a^{\circ}+a^{\circ}+\angle C=180^{\circ}[/tex]

[tex]2a^{\circ}=180^{\circ}-\angle C[/tex]

Divide both sides by 2.

[tex]a^{\circ}=\dfrac{180^{\circ}-\angle C}{2}[/tex]

It is given that

[tex]30<C<60[/tex]

[tex]\Rightarrow 180-30>180-C>180-60[/tex]     (Subtract from 180)

[tex]\Rightarrow 150>180-C>120[/tex]

[tex]\Rightarrow \dfrac{150}{2}>\dfrac{180-C}{2}>\dfrac{120}{2}[/tex]      (Divide by 2)

[tex]\Rightarrow 75>a>60[/tex]

[tex]\Rightarrow 60<a<75[/tex]

Hence, the correct option is C.