The line AB has midpoint (2,5).
A has coordinates (1, 2).
Find the coordinates of B.

Answer:
[tex] X_m = \frac{A_x +B_x}{2}= \frac{1+B_x}{2}= 2[/tex]
And we can solve for [tex] B_x[/tex] and we got:
[tex] 1+B_x = 4[/tex]
[tex]B_x = 3[/tex]
[tex] Y_m = \frac{A_y +B_y}{2}= \frac{2+B_y}{2}= 5[/tex]
And we can solve for [tex] B_x[/tex] and we got:
[tex] 2+B_y = 10[/tex]
[tex]B_y = 8[/tex]
So then the coordinates for B are (3,8)
Step-by-step explanation:
For this case we know that the midpoint for the segment AB is (2,5)
And we know that the coordinates of A are (1,2)
We know that for a given segment the formulas in order to find the midpoint are given by:
[tex] X_m = \frac{A_x +B_x}{2}= \frac{1+B_x}{2}= 2[/tex]
And we can solve for [tex] B_x[/tex] and we got:
[tex] 1+B_x = 4[/tex]
[tex]B_x = 3[/tex]
[tex] Y_m = \frac{A_y +B_y}{2}= \frac{2+B_y}{2}= 5[/tex]
And we can solve for [tex] B_x[/tex] and we got:
[tex] 2+B_y = 10[/tex]
[tex]B_y = 8[/tex]
So then the coordinates for B are (3,8)