Respuesta :

Answer:

[tex] X_m = \frac{A_x +B_x}{2}= \frac{1+B_x}{2}= 2[/tex]

And we can solve for [tex] B_x[/tex] and we got:

[tex] 1+B_x = 4[/tex]

[tex]B_x = 3[/tex]

[tex] Y_m = \frac{A_y +B_y}{2}= \frac{2+B_y}{2}= 5[/tex]

And we can solve for [tex] B_x[/tex] and we got:

[tex] 2+B_y = 10[/tex]

[tex]B_y = 8[/tex]

So then the coordinates for B are (3,8)

Step-by-step explanation:

For this case we know that the midpoint for the segment AB is (2,5)

And we know that the coordinates of A are (1,2)

We know that for a given segment the formulas in order to find the midpoint are given by:

[tex] X_m = \frac{A_x +B_x}{2}= \frac{1+B_x}{2}= 2[/tex]

And we can solve for [tex] B_x[/tex] and we got:

[tex] 1+B_x = 4[/tex]

[tex]B_x = 3[/tex]

[tex] Y_m = \frac{A_y +B_y}{2}= \frac{2+B_y}{2}= 5[/tex]

And we can solve for [tex] B_x[/tex] and we got:

[tex] 2+B_y = 10[/tex]

[tex]B_y = 8[/tex]

So then the coordinates for B are (3,8)