Respuesta :
Answer:
Step-by-step explanation:
Given:
The set of numbers {1, 2, 3, 4, 5}
Affter that, we find the sum um of two distinct numbers selected randomly from the set above;
- 1+2 =3
- 1+3=4
- 1+4=5
- 1+5=6
- 2+3=5
- 2+4=6
- 2+5=7
- 3+4=7
- 3+5=8
- 4+5 = 9
Therefore, we have the following number: 3,4,5,6,5,6,7,7,8,9
so we have x = {3,4,5,6,5,6,7,7,8,9 }
now we find P(x) of each number, we have n(S) = 10
x 3 4 5 6 7 8 9
P(x) 1/10 1/10 1/10 2/10 2/10 2/10 1/10
Hope it will find you well.
The probability distribution of a set gives the probabilities of possible outcomes of the set
The set of numbers is given as:
[tex]\mathbf{Set = \{1, 2, 3, 4, 5\}}[/tex]
Add two distinct numbers of the set.
The sum is as follows
[tex]\mathbf{1+2 =3}[/tex]
[tex]\mathbf{1+3=4}[/tex]
[tex]\mathbf{1+4=5}[/tex]
[tex]\mathbf{1+5=6}[/tex]
[tex]\mathbf{2+3=5}[/tex]
[tex]\mathbf{2+4=6}[/tex]
[tex]\mathbf{2+5=7}[/tex]
[tex]\mathbf{3+4=7}[/tex]
[tex]\mathbf{3+5=8}[/tex]
[tex]\mathbf{4+5 = 9}[/tex]
The sum of the distinct numbers are:
[tex]\mathbf{Sum = \{3,4,5,6,5,6,7,7,8,9\}}[/tex]
Calculate the probability of each number in the sum set i.e. 3, 4, 5, 6, 7, 8 and 9
[tex]\mathbf{P(3) = P(4) = P(5)= P(9)= \frac{1}{10} = 0.10}[/tex]
[tex]\mathbf{P(6) = P(7) = P(8)= \frac{2}{10} = 0.20}[/tex]
So, the probability distribution for the random variable is:
x - - P(x)
3 -- 0.10
4 -- 0.10
5 -- 0.10
6 -- 0.20
7 -- 0.20
8 -- 0.20
9 -- 0.10
Read more about probability distributions at:
https://brainly.com/question/795909