Respuesta :
Answer:
1. t = 0.0819s
2. W = 0.25N
3. n = 36
4. y(x , t)= Acos[172x + 2730t]
Explanation:
1) The given equation is
[tex]y(x, t) = Acos(kx -wt)[/tex]
The relationship between velocity and propagation constant is
[tex]v = \frac{\omega}{k}=\frac{2730rad/sec}{172rad/m}\\\\[/tex]
v = 15.87m/s
Time taken, [tex]t = \frac{\lambda}{v}[/tex]
[tex]= \frac{1.3}{15.87}\\\\=0.0819 sec[/tex]
t = 0.0819s
2)
The velocity of transverse wave is given by
[tex]v = \sqrt{\frac{T}{\mu}}[/tex]
[tex]v = \sqrt{\frac{W}{\frac{m}{\lambda}}}[/tex]
mass of string is calculated thus
mg = 0.0125N
[tex]m = \frac{0.0125N}{9.8N/s}[/tex]
m = 0.00128kg
[tex]\omega = \frac{v^2m}{\lambda}[/tex]
[tex]\omega = \frac{(15.87^2)(0.00128)}{1.30}[/tex]
[tex]\omega =[/tex] 0.25N
3)
The propagation constant k is
[tex]k=\frac{2\pi}{\lambda}[/tex]
hence
[tex]\lambda = \frac{2\pi}{k}\\\\\lambda = \frac{2 \times 3.142}{172}[/tex]
[tex]\lambda =[/tex] 0.036 m
No of wavelengths, n is
[tex]n = \frac{L}{\lambda}\\\\n = \frac{1.30m}{0.036m}\\[/tex]
n = 36
4)
The equation of wave travelling down the string is
[tex]y(x, t)=Acos[kx -wt]\\\\becomes\\\\y(x , t)= Acos[(172 rad.m)x + (2730 rad.s)t][/tex]
[tex]without, unit\\\\y(x , t)= Acos[172x + 2730t][/tex]