Answer:
41 turns
Explanation:
[tex]\dfrac{d\phi}{dt}[/tex] = Induced emf = 12.4 mV
[tex]\dfrac{dI}{dt}[/tex] = Current changing rate = 0.0275 A/s
L= Inductance
[tex]\phi[/tex] = Average flux = 0.00285 wb
N = Number of turns
Change in flux is given by
[tex]\dfrac{d\phi}{dt}=L\dfrac{dI}{dt}\\\Rightarrow 12.4\times 10^{-3}=L0.0275\\\Rightarrow L=\dfrac{2.4\times 10^{-3}}{0.0275}\\\Rightarrow L=0.08727\ H[/tex]
Flux through each turn is given by
[tex]\dfrac{\phi}{N}=L\dfrac{I}{N}\\\Rightarrow 0.00285=0.08727\times \dfrac{1.34}{N}\\\Rightarrow N=\dfrac{0.08727\times 1.34}{0.00285}\\\Rightarrow N=41.03221\ turns[/tex]
The number of turns is 41