Respuesta :

Answer:

It will take 50 years to decay from 512 grams to 121.5 grams.

Step-by-step explanation:

The decay formula :

[tex]N=N_0e^{-\lambda t}[/tex]

where

N= amount of substance after t time

N₀= initial of substance

t= time.

A substance decays at a rate 25% every 10 years.

So, remaining amount of the substance is = (100%-25%)= 75%

[tex]\frac{N}{N_0}=\frac{75\%}{100\%}=\frac{75}{100}=\frac34[/tex], t= 10

[tex]N=N_0e^{-\lambda t}[/tex]

[tex]\Rightarrow \frac {N}{N_0}=e^{-\lambda t}[/tex]

[tex]\Rightarrow \frac34 =e^{-\lambda .10}[/tex]

Taking ln both sides

[tex]\Rightarrow ln|\frac34| =ln|e^{-\lambda .10}|[/tex]

[tex]\Rightarrow ln|\frac34|=-10\lambda[/tex]

[tex]\Rightarrow \lambda=\frac{ ln|\frac34|}{-10}[/tex]

Now , N₀= 512 grams, N= 121.5 grams, t=?

[tex]N=N_0e^{-\lambda t}[/tex]

[tex]\therefore 121.5=512e^{-\frac{ln|\frac34|}{-10}.t}[/tex]

[tex]\Rightarrow 121.5=512e^{\frac{ln|\frac34|}{10}.t}[/tex]

[tex]\Rightarrow \frac{121.5}{512}=e^{\frac{ln|\frac34|}{10}.t}[/tex]

Taking ln both sides

[tex]\Rightarrow ln|\frac{121.5}{512}|=ln|e^{\frac{ln|\frac34|}{10}.t}|[/tex]

[tex]\Rightarrow ln|\frac{121.5}{512}|={\frac{ln|\frac34|}{10}.t}[/tex]

[tex]\Rightarrow t=\frac{ln|\frac{121.5}{512}|}{\frac{ln|\frac34|}{10}}[/tex]

[tex]\Rightarrow t=\frac{10.ln|\frac{121.5}{512}|}{{ln|\frac34|}}[/tex]

⇒t=50 years

It will take 50 years to decay from 512 grams to 121.5 grams.