In the system of equations, r and s are constants. If the system has infinitely many solutions, what is the value of rs?


rx-sy=26

4x+3y=13


A) -14

B) -48

C) 14

D) 48

Respuesta :

Answer:  B) -48

Step-by-step explanation:

If the system of two linear equations [tex]a_1x+b_1y=c_1\ \&\ a_2+b_2y=c_2[/tex] has infinitely many solutions , then

[tex]\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}=k[/tex]

For the given system of linear equations : [tex]rx-sy=26\\4x+3y=13[/tex]

We , will have

[tex]\dfrac{r}{4}=\dfrac{-s}{3}=\dfrac{26}{13}=2\\\\\Rightarrow\ r= 4\times2=8\ \ \&\ \ s=2\times-3=-6[/tex]

The value of [tex]rs=(8)\times-6=-48[/tex]

Hence, the value of rs is -48.

Thus , the correct option is B) -48.