Respuesta :

Answer:

The equation of the ellipse = [tex]\frac{x^2}{1} +\frac{y^2}{37} =1[/tex]

Step-by-step explanation:

Explanation:-

Step(l):-

Given foci of the ellipse is (0,±6)

we know that the foci  ( 0, ±C) = (0,±6)

                                        C   =  6

The focus is lie on y- axis

Step(ll):-

Given data  the vertices are (0,±√37)

The major axes are  (0,±a) =  (0,±√37)

       a = √37

The relation between the focus and semi major axes and semi minor axes are       [tex]c^{2} = a^{2} - b^{2}[/tex]

           [tex]6^2 = (\sqrt{37} )^{2} - b^{2}[/tex]

          [tex]36 = 37 - b^{2}[/tex]

          [tex]b^{2} = 37 - 36 =1[/tex]

Step (lll) :-

The equation of the ellipse     [tex]\frac{x^2}{b^2} +\frac{y^2}{a^{2} } =1[/tex]

                                          [tex]\frac{x^2}{1^2} +\frac{y^2}{\sqrt({37} )^{2} } =1[/tex]

                                         [tex]\frac{x^2}{1} +\frac{y^2}{37} =1[/tex]

Conclusion:-

The equation of the ellipse = [tex]\frac{x^2}{1} +\frac{y^2}{37} =1[/tex]

           

Ver imagen belgrad