Respuesta :

Answer:

[tex]y = \frac{(x+6)\cdot (x+1)}{(x-4)\cdot (x+2)} + 5[/tex]

Step-by-step explanation:

The vertical asymptotes correspond to points where denominator is equalized to zero. Whereas, x-intercepts corresponds to points where numerator is equalized to zero. Lastly, the horizontal asymptote corresponds to the limit of the function when x diverges to plus or minus infinity. Then, the rational equation is:

[tex]y = \frac{(x+6)\cdot (x+1)}{(x-4)\cdot (x+2)} + 5[/tex]