Respuesta :

Answer:

enclosed area A = 2/3 units^2

Step-by-step explanation:

Given:-

- The two functions are given:-

                  f ( x ) = x^2 + 2x

                  g ( x ) = 2x + 1

Find:-

What is the area of the region between the graphs of f(x) and g(x)

Solution:-

- We will determine the interval or limits in which the two given function f(x) and g(x).

- We will find the interval by determining the point of intersection between the two graphs. Hence,

                  f ( x ) = g ( x )

                  x^2 + 2x = 2x + 1

                  x^2 = 1

                  x = ± 1 , y = 3 , -1

- The pair of intersection coordinates are ( -1 , -1 ) and ( 1 , 3 ). The functions are bounded by the intervals:

                  -1 ≤ x ≤ 1

                  -1 ≤ y ≤ 3

- Now sketch each function to visualize the enclosed region. ( See attachment ). We see that in the range ( -1 ≤ x ≤ 1 ) the function g ( x ) > f ( x ).

- So we will find the area along the y-direction with the interval ( -1 ≤ x ≤ 1 ) will define the limits of integration. The enclosed area is given by:

- The limits of integration are  [ a , b ] = [ 1 , -1 ].

               

                  [tex]A = \int\limits^a_b {( y_2 (x) - y_1(x) )} \, dx \\\\y_2 ( x ) > y_1 ( x )\\\\A = \int\limits^a_b {( g (x) - f(x) )} \, dx \\\\A = \int\limits^a_b {( x^2 + 2x - 2x - 1 )} \, dx \\\\ A = \int\limits^a_b {( x^2 - 1 )} \, dx \\\\A = [ \frac{x^3}{3} - x ]\limits^1_-_1 \\\\A = [ \frac{1^3}{3} - 1 - \frac{(-1)^3}{3} - (-1) ]\\\\A = [ \frac{1}{3} - 1 + \frac{1}{3} +1 ] = \frac{2}{3}[/tex]

- The enclosed area A = 2/3 units^2.