What is the length of line segment KJ?
[tex]2 \sqrt[]{3 } [/tex]
[tex] 3\sqrt[]{2} [/tex]
[tex]3 \sqrt[]{3} [/tex]
[tex]3 \sqrt[]{5} [/tex]

Respuesta :

Answer:

Triangle KMJ is right triangle with legs KM and MJ and hypotenuse KJ.

By the Pythagorean theorem,

[tex]K J^{2} =KM^{2} +MJ^{2} \\SubstituteKM=6, MJ=3, then\\KJ^{2} =6^{2} +3^{2} \\KJ^{2}=36+9=45\\KJ=\sqrt{45} =3\sqrt{5}[/tex]

Step-by-step explanation:

Hope this helps