Answer: [tex]v=\sqrt[]{\frac{2K}{m} }[/tex]
Step-by-step explanation:
[tex]K=\frac{mv^2}{2}[/tex]
First, multiply by 2 to get rid of the 2 in the denominator. Remember that if you make any changes you have to make sure the equation keeps balanced, so do it on both sides as following;
[tex]2*K=\frac{mv^2}{2}*2[/tex]
[tex]2K=mv^2[/tex]
Divide by m to isolate [tex]v^2[/tex].
[tex]\frac{2K}{m}=\frac{mv^2}{m}[/tex]
[tex]\frac{2K}{m} =v^2[/tex]
To eliminate the square and isolate v, extract the square root.
[tex]\sqrt[]{\frac{2K}{m} }=\sqrt[]{v^2}[/tex]
[tex]\sqrt[]{\frac{2K}{m} }=v[/tex]
let's rewrite it in a way that v is in the left side.
[tex]v=\sqrt[]{\frac{2K}{m} }[/tex]