Solve the system by elimination 1: x+5y-4z=-10, 2x-y+5z=-9, 2x-10y-5z=0 .. . 2. Solve the system by substitution: 2x-y+z=-4, z=5, -2x+3y-z=-10. . . 3. A food store makes a 11–pound mixture of peanuts, almonds, and raisins. The cost of peanuts is $1.50 per pound, almonds cost $3.00 per pound, and raisins cost $1.50 per pound. The mixture calls for twice as many peanuts as almonds. The total cost of the mixture is $21.00. How much of each ingredient did the store use?

Respuesta :

1 )
1st and 2nd equation (multiply 1st by -2 ):
-2x - 10 y + 8 z = 20
2 x -  y    + 5 z = -9
---------------------------
       - 11 y + 13 z = 11  /  * ( -20 )
1st and 3rd:
- 2 x - 10 y + 8 z = 20
   2 x - 10 y - 5 z = 0
-----------------------------
         - 20 x + 3 z = 20  /  * 11
        ----------------------------------
         220 y - 260 z = -220
        - 220 y + 33 z = 220
        ------------------------------
                       z = 0,      y = -1,        x = - 5
2 )  
       2 x - y + 5 = -4
       - 2 x + 3 y - 5 = - 10
       Substitution: y = 2 x + 9
       - 2 x + 3(2 x + 9 ) = -5
        4 x = - 32,          x = -8,    y = -7,   z = 5
3 )
      x + y + z = 11
   1.5 x+3 y +1.5 z = 21
      x = 2 y
   ------------------------
      3 y + z = 11  / * (-2)
      6 y + 1.5 z = 21
    ------------------------
     - 6 y - 2 z = -22
       6 y + 1.5 z = 21
      ------------------------
                 -0.5 z = -1,           z = 2,   y = 3,   z = 6
Answer: the store used 6 pounds of peanuts, 3 pounds of almonds and 2 pounds of raisins. 
           

Answer:

Solve the system by elimination:

Answer: (-5, -1, 0)

Solve the system by substitution:

Answer: (-8, -7, 5)

How much of each ingredient did the store use?

6 pounds of peanuts, 3 pounds of almonds, and 2 pounds of raisins

Step-by-step explanation:

i just took this test, and got 100%.