Respuesta :
Answer:
We have:
- [tex]H'(\theta)=\sin \theta+\theta \cos \theta[/tex]
and
- [tex]H''(\theta)=2\cos \theta-\theta\sin \theta[/tex]
Step-by-step explanation:
We are given a function H(θ) by:
[tex]H(\theta)=\theta \sin \theta[/tex]
Now, we are asked to find the first and second derivative of the function H(θ)
Now,
[tex]H'(\theta)=\sin \theta(\dfrac{d}{d\theta} \theta)+\theta(\dfrac{d}{d\theta}\sin \theta)\\\\i.e.\\\\H'(\theta)=\sin \theta+\theta \cos \theta[/tex]
Also, the second derivative is calculate by:
[tex]H''(\theta)=\dfrac{d}{d\theta}\sin \theta+\cos \theta(\dfrac{d}{d\theta}\theta)+\theta(\dfrac{d}{d\theta}\cos \theta)\\\\i.e.\\\\H''(\theta)=\cos \theta+\cos \theta+\theta(-sin \theta)\\\\i.e.\\\\H''(\theta)=2\cos \theta-\theta\sin \theta[/tex]
- H'(θ) = sin θ + θ cos θ
- H''(θ) = 2cos θ - θ sin θ
Further explanation
In this problem, we will solve the derivatives of products of two functions. The formula used is the product rules as follows:
[tex]\boxed{ \ (f \cdot g)' = f' \cdot g + f \cdot g' \ }[/tex]
or in differentials notation:
[tex]\boxed{ \ d(uv)' = udv + vdu \ }[/tex]
Given:
- [tex]\boxed{ \ u = \theta \ }[/tex]
- [tex]\boxed{ \ v = sin \ \theta \ }[/tex]
Questions:
[tex]\boxed{ \ H'(\theta) \ and \ H" (\theta) \ }[/tex]
The Process:
Step-1: determine the first derivative
Remember the following because we will use it:
- [tex]\boxed{ \ y = sin \ x \rightarrow y' = cos \ x \ }[/tex]
- [tex]\boxed{ \ y = cos \ x \rightarrow y' = - sin \ x \ }[/tex]
[tex]\boxed{ \ u = \theta \rightarrow u' = du = 1 \ }[/tex]
[tex]\boxed{ \ v = sin \ \theta \rightarrow v' = dv = cos \theta \ }[/tex]
[tex]\boxed{ \ H'(\theta) = udv + vdu \ }[/tex]
[tex]\boxed{ \ H'(\theta) = (\theta)(cos \theta) + (sin \theta)(1) \ }[/tex]
Thus, we get the first derivative [tex]\boxed{\boxed{ \ H'(\theta) = \theta \ cos \theta + sin \theta \ }}[/tex]
Step-2: determine the second derivative
From the first derivative [tex]\boxed{ \ H'(\theta) = \theta \ cos \theta) + sin \theta \ }[/tex] we specify the second derivative.
- Part-1 is [tex]\boxed{ \ f = \theta \ cos \theta \ }[/tex]
- Part-2 is [tex]\boxed{ \ g = sin \theta \ }[/tex]
[tex]\boxed{ \ f' = (\theta)(- sin \ \theta) + (cos \ \theta)(1) \ } \rightarrow \boxed{ \ f' = - \theta sin \ \theta + cos \ \theta \ }[/tex]
[tex]\boxed{ \ g' = cos \ \theta \ }[/tex]
Let's solve for the second derivative of H.
[tex]\boxed{ \ H"(\theta) = (- \theta sin \ \theta + cos \ \theta) + (cos \theta) \ }[/tex]
Thus we get the second derivative [tex]\boxed{\boxed{ \ H"(\theta) = 2cos \theta - \theta sin \ \theta \ }}[/tex]
Learn more
- If g(x) = (x + 1)/(x - 2) and h(x) = 4 – x, what is the value of g(h(-3))? https://brainly.com/question/1900154
- The inverse of a function https://brainly.com/question/3225044
- The composite function https://brainly.com/question/1691598
Keywords: the answer, the formula, the product rule, first, the second derivative, differential notation
