Respuesta :
s=[tex] \frac{1}{3} [/tex]
A=18[tex] s^{2} [/tex]
A=18*([tex] \frac{1}{3 )^{2} } [/tex]
A=2
A=18[tex] s^{2} [/tex]
A=18*([tex] \frac{1}{3 )^{2} } [/tex]
A=2
Answer: The required value of A is 2 square units.
Step-by-step explanation: We are given the following values for s and A :
[tex]s=\dfrac{1}{3}~\textup{unit}~~~~\textup{and}~~~A=18s^2.[/tex]
We are to find the value of A in square units.
To find the value of A, we need to substitute the value of s in the expression for A.
Therefore, we get
[tex]A=18s^2=18\times\left(\dfrac{1}{3}\right)^2=18\times\dfrac{1}{9}=2~\textup{sq. units}.[/tex]
Thus, the required value of A is 2 square units.