Respuesta :

Answer:

Use the half angle formula, sin^2(x) = 1/2*(1 - cos(2x)) and substitute into the integral so it becomes 1/2 times the integral of (1 - cos(2x)) dx. Set u = 2x and du = 2dx to perform u substitution on the integral. Since dx = du/2, the result is 1/4 times the integral of (1 - cos(u)

Step-by-step explanation:

Have a horse-some day!

Answer:

[tex] →\int (\sin(x) + 2x)dx \\ = \int \sin(x)dx + 2 \int xdx \\ = - \cos(x) + 2.( \frac{ {x}^{2} }{2} ) +C\\ = \boxed{ {x}^{2} - \cos(x) + C}✓[/tex]

  • x²-cos(x)+C is the right answer.

Otras preguntas