Answer : The number of moles of [tex]CaC_2[/tex] reacted was, 0.214 moles.
Explanation :
First we have to calculate the mole of [tex]C_2H_2[/tex] gas.
Using ideal gas equation:
[tex]PV=nRT[/tex]
where,
P = Pressure of [tex]C_2H_2[/tex] gas = 748 mmHg - 23.8 mHg = 724.2 mmHg = 0.953 atm (1 atm = 760 mmHg)
V = Volume of [tex]C_2H_2[/tex] gas = 5.50 L
n = number of moles [tex]C_2H_2[/tex] = ?
R = Gas constant = [tex]0.0821L.atm/mol.K[/tex]
T = Temperature of [tex]C_2H_2[/tex] gas = [tex]25^oC=273+25=298K[/tex]
Putting values in above equation, we get:
[tex]0.953atm\times 5.50L=n\times (0.0821L.atm/mol.K)\times 298K[/tex]
[tex]n=0.214mol[/tex]
Now we have to calculate the moles of [tex]CaC_2[/tex]
The balanced chemical reaction is:
[tex]CaC_2(s)+2H_2O(l)\rightarrow C_2H_2(g)+Ca(OH)_2(aq)[/tex]
From the balanced chemical reaction we conclude that,
As, 1 mole of [tex]C_2H_2[/tex] gas produced from 1 mole of [tex]CaC_2[/tex]
So, 0.214 mole of [tex]C_2H_2[/tex] gas produced from 0.214 mole of [tex]CaC_2[/tex]
Therefore, the number of moles of [tex]CaC_2[/tex] reacted was, 0.214 moles.