1 A 75-g ball is projected from a height of 1.6 m with a horizontal velocity of 2 m/s and bounces from a 400-g smooth plate supported by springs. Knowing that the height of the rebound is 0.6 m, determine (a) the velocity of the plate immediately after the impact, (b) the energy lost due to the impact.

Respuesta :

Answer with explanation:

We are given that  

Mass of ball,[tex]m_1=[/tex]75 g=[tex]\frac{75}{1000}=0075kg[/tex]

1 kg=1000 g

Height,[tex]h_1=1.6 m[/tex]

[tex]h_2=0.6 m[/tex]

Horizontal velocity,[tex]v_x=2 m/s[/tex]

Mass of plate[tex]m_2=400 g=\frac{400}{1000}=0.4 kg[/tex]

a.Initial velocity of plate,[tex]u_2=0[/tex]

Velocity before impact=[tex]u_1=\sqrt{2gh_1}=\sqrt{2\times 9.8\times 1.6}=5.6m/s[/tex]

Where [tex]g=9.8 m/s^2[/tex]

Velocity after impact,[tex]v_1=\sqrt{2gh_2}=\sqrt{2\times 9.8\times 0.6}=3.4m/s[/tex]

According to law of conservation of momentum  

[tex]m_1u_1+m_2u_1=-m_1v_1+m_2v_2[/tex]

Substitute the values  

[tex]0.075\times 5.6+0=-0.075\times 3.4+0.4v_2[/tex]

[tex]0.4v_2=0.075\times 5.6+0.075\times 3.4[/tex]

[tex]v_2=\frac{0.075\times 5.6+0.075\times 3.4}{0.4}=1.69 m/s[/tex]

Velocity of plate=1.69 m/s

b.Initial energy=[tex]\frac{1}{2}m_1v^2_x+m_1gh_1=\frac{1}{2}(0.075)(2^2)+0.075\times 9.8\times 1.6=1.326 J[/tex]

Final energy=[tex]\frac{1}{2}m_1v^2_x+m_1gh_2+\frac{1}{2}m_2v^2_2[/tex]

Final energy=[tex]\frac{1}{2}(0.075)(2^2)+0.075\times 9.8\times 0.6+\frac{1}{2}(0.4)(1.69)^2=1.162 J[/tex]

Energy lost due to compact=Initial energy-final energy=1.326-1.162=0.164 J