Answer: The pressure of the gas inside the vessel is 0.232 atm
Explanation:
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Given mass of carbon dioxide = 1.65 g
Molar mass of carbon dioxide = 44 g/mol
Putting values in above equation, we get:
[tex]\text{Moles of carbon dioxide}=\frac{1.65g}{44g/mol}=0.0375mol[/tex]
To calculate the pressure of the gas, we use the equation given by ideal gas which follows:
PV=nRT
where,
P = pressure of the gas = ?
V = Volume of the gas = 3.93 L
T = Temperature of the gas = [tex]23^oC=[23+273]=296K[/tex]
R = Gas constant = [tex]0.0821\text{ L. atm }mol^{-1}K^{-1}[/tex]
n = number of moles of gas = 0.0375 moles
Putting values in above equation, we get:
[tex]P\times 3.93L=0.0375mol\times 0.0821\text{ L. atm }mol^{-1}K^{-1}\times 296K\\\\P=\frac{0.0375\times 0.0821\times 296}{3.93}=0.232atm[/tex]
Hence, the pressure of the gas inside the vessel is 0.232 atm