contestada

A car accelerates uniformly from rest to 24.8 m/s in 7.88 s along a level stretch of road. Ignoring friction, determine the average power required to accelerate the car if (a) the weight of the car is 8.55 x 103 N, and (b) the weight of the car is 1.10 x 104 N.

Respuesta :

Answer:

When he weight of the car is 8.55 x [tex]10^{3}[/tex] N then power = 314.012 KW

When he weight of the car is 1.10 x [tex]10^{4}[/tex]  N then power =  43.76 KW

Explanation:

Given that

Initial velocity [tex]V_{1}[/tex] = 0

Final velocity [tex]V_{2}[/tex] = 24.8 [tex]\frac{m}{s}[/tex]

Time = 7.88 sec

We know that power required to accelerate the car is given by

P = [tex]\frac{change \ in \ kinetic \ energy}{time}[/tex]

Change in kinetic energy Δ K.E = [tex]\frac{1}{2} m (V_{2}^{2} - V_{1}^{2} )[/tex]

Since Initial velocity [tex]V_{1}[/tex] = 0

⇒ Δ K.E = [tex]\frac{1}{2} m V_{2} ^{2}[/tex]

⇒ Power P = [tex]\frac{1}{2} \frac{m}{t} V_{2} ^{2}[/tex]

⇒ Power P = [tex]\frac{1}{2} \frac{W}{g\ t} V_{2} ^{2}[/tex]   -------- (1)

(a). The weight of the car is 8.55 x [tex]10^{3}[/tex] N = 8550 N

Put all the values in above formula

So power P = [tex]\frac{1}{2} \frac{8550}{(9.81)\ (7.88)} (24.8) ^{2}[/tex]

P = 314.012 KW

(b). The weight of the car is 1.10 x [tex]10^{4}[/tex] N = 11000 N

Put all the values in equation (1) we get

P = [tex]\frac{1}{2} \frac{11000}{(9.81)\ (7.88)} (24.8) ^{2}[/tex]

P = 43.76 KW