g question, An asteroid is discovered in a nearly circular orbit around the Sun, with an orbital radius that is 3.83 times Earth's. What is the asteroid's orbital period T , its "year," in terms of Earth years

Respuesta :

Answer:

Therefore the asteroids's orbital period is 7.45 years.

Explanation:

Kapler's third law:

The orbital period of a planet squared is directly proportional to  the average distance of the planet from the sun cubed.

[tex]T^2\propto r^3[/tex]

T = orbital period of the planet

r = orbital radius of the planet

[tex]\therefore \frac{T_1^2}{T_2^2}=\frac{R_1^3}{R_2^3}[/tex]

Here [tex]T_1[/tex] = Orbital period of the asteroid

[tex]R_1[/tex]= Orbital radius of the asteroid

[tex]T_2=[/tex]  Orbital period of Earth = 1 year

[tex]R_2[/tex] =Orbital radius of Earth

Given that the orbital radius of asteroid is 3.83 times of orbital radius of Earth.

[tex]R_1 = 3.83R_2[/tex]

[tex]\frac{R_1}{R_2}=3.83[/tex]

Therefore

[tex]\therefore \frac{T_1^2}{T_2^2}=\frac{R_1^3}{R_2^3}[/tex]

[tex]\Rightarrow ( \frac{T_1}{T_2})^2=(\frac{R_1}{R_2})^3[/tex]

[tex]\Rightarrow ( \frac{T_1}{T_2})^2=(3.83)^3[/tex]

[tex]\Rightarrow \frac{T_1}{T_2}=(3.83)^\frac32[/tex]

[tex]\Rightarrow {T_1=(3.83)^\frac32\times T_2[/tex]

[tex]\Rightarrow T_1= 7.45\times (1 \ year)[/tex]    [[tex]T_2=[/tex] 1 year]

[tex]\Rightarrow T_1= 7.45 \ years[/tex]

Therefore the asteroids's orbital period is 7.45 years.