Respuesta :

Answer:

[tex]z=3(cos 45^{\circ} + i sin 45^{\circ})[/tex]

Step-by-step explanation:

The given complex number is:

[tex]z=3+3i[/tex]

First of all, we find the modulus of the complex number.

Given a complex number written in the form

[tex]z=a+ib[/tex]

The modulus is given by

[tex]\rho =\sqrt{a^2+b^2}[/tex]

Here we have:

a = 3

b = 3

So the modulus is

[tex]\rho=\sqrt{3^2+3^2}=3[/tex]

Now we find the argument. The argument is given by the equation:

[tex]tan \theta = \frac{b}{a}[/tex]

In this case,

a = 3

b = 3

So the argument is:

[tex]\theta=tan^{-1}(\frac{3}{3})=45^{\circ}[/tex]

So we can rewrite the complex number using polar representation as:

[tex]z=\rho (cos \theta + i sin \theta)[/tex]

So

[tex]z=3(cos 45^{\circ} + i sin 45^{\circ})[/tex]

Answer:

3 sqrt(2)(cos 45 degrees + i sin 45 degrees)

Step-by-step explanation:

Just took quiz and got it right :)