Answer:
[tex]g(1)=-1[/tex]
Step-by-step explanation:
Rephrasing the question:
Given:
[tex]f(x)=x+4[/tex]
and
[tex]g(x)=x^2+3x-f(x)[/tex]
Find g(1).
Solution:
Firstly, we need to replace f(x) with the function in g(x) to get a function, g(x), in terms of x, so we have:
[tex]f(x)=x+4\\g(x)=x^2+3x-f(x)\\g(x)=x^2+3x-(x+4)\\g(x)=x^2+3x-x-4\\g(x)=x^2+2x-4[/tex]
To get g(1), we replace "x" with "1", shown below:
[tex]g(x)=x^2+2x-4\\g(1)=(1)^2+2(1)-4\\g(1)=1+2-4\\g(1)=-1[/tex]
The value is [tex]-1[/tex]