Respuesta :

Given that ABC is a right triangle.

The length of AC = 10 and AB = 17

We need to determine the m∠B

The measure of ∠B:

The side opposite to ∠B is AC and the hypotenuse of the triangle is AB

The m∠B can be determined using the trigonometric identity,

[tex]sin B=\frac{opp}{hyp}[/tex]

where [tex]opp=AC[/tex] and [tex]hyp=AB[/tex]

Substituting, we get;

[tex]sin B=\frac{AC}{AB}[/tex]

Substituting the values, we get;

[tex]sinB=\frac{10}{17}[/tex]

[tex]sin B=0.588[/tex]

Taking [tex]sin^{-1}[/tex] on both sides of the equation, we have;

[tex]B=sin^{-1}(0.588)[/tex]

[tex]B=36.015^{\circ}[/tex]

Rounding off to the nearest tenth, we get;

[tex]B=36.0^{\circ}[/tex]

Hence, the measure of ∠B is 36.0°