Respuesta :

Answer:

Rectangular Coordinates:

[tex]x=\frac{5\sqrt{2}}{2}[/tex]

[tex]y=\frac{5\sqrt{2}}{2}[/tex]

Step-by-step explanation:

Polar coordinate are given in the form:

[tex](r,\theta)[/tex]

The point given is:  [tex](5, \frac{\pi}{4})[/tex]

So,

[tex]r=5[/tex]

and

[tex]\theta=\frac{\pi}{4}[/tex]

The formula to convert polar coordinates to rectangular coordinates (x, y) is:

[tex]x=rCos \theta[/tex]

[tex]y=rSin\theta[/tex]

Note that  [tex]sin(\frac{\pi}{4})=cos(\frac{\pi}{4})=\frac{\sqrt{2}}{2}[/tex]

Thus,

[tex]x=rCos\theta=5Cos(\frac{\pi}{4})=5*\frac{\sqrt{2}}{2}=\frac{5\sqrt{2}}{2}[/tex]

[tex]y=rSin\theta=5*Sin(\frac{\pi}{4})=5*\frac{\sqrt{2}}{2}=\frac{5\sqrt{2}}{2}[/tex]