Someone help please

Given:
Function defined in the table.
To find:
The average rate of change.
Solution:
Limit of the function: [tex]4 \leq x \leq 5[/tex]
Average rate of change formula:
[tex]$A(x)=\frac{f(b)-f(a)}{b-a}[/tex]
Here a = 4 and b = 5
In the table,
f(a) = f(4) = 9
f(b) = f(5) = 7
Substitute this in the formula.
[tex]$A(x)=\frac{f(5)-f(4)}{5-4}[/tex]
[tex]$A(x)=\frac{7-9}{1}[/tex]
[tex]$A(x)=\frac{-2}{1}[/tex]
[tex]$A(x)=-2[/tex]
The average rate of change is -2.