Respuesta :

Given:

Function defined in the table.

To find:

The average rate of change.

Solution:

Limit of the function: [tex]4 \leq x \leq 5[/tex]

Average rate of change formula:

[tex]$A(x)=\frac{f(b)-f(a)}{b-a}[/tex]

Here a = 4 and b = 5

In the table,

f(a) = f(4) = 9

f(b) = f(5) = 7

Substitute this in the formula.

[tex]$A(x)=\frac{f(5)-f(4)}{5-4}[/tex]

[tex]$A(x)=\frac{7-9}{1}[/tex]

[tex]$A(x)=\frac{-2}{1}[/tex]

[tex]$A(x)=-2[/tex]

The average rate of change is -2.