Respuesta :

Answer:

[tex] {e}^{3v - 2u} [/tex]

Step-by-step explanation:

We have that:

[tex]u = ln(5) \: \: and \: \: v = ln(2) [/tex]

We rewrite in exponential form to get:

[tex]5 = {e}^{u} \: \: and \: \: 2 = {e}^{v} [/tex]

We rewrite 8/25 in terms of 2 and 3.

[tex] \frac{8}{25} = \frac{ {2}^{3} }{ {5}^{2} } [/tex]

This implies that:

[tex] \frac{8}{25} = \frac{ {e}^{3v} }{ {e}^{2u} } [/tex]

We use the quotient rule to get:

[tex]\frac{8}{25} = {e}^{3v - 2u} [/tex]