The following sample of lengths was taken from 9 rods off the assembly line. Construct the 99% confidence interval for the population standard deviation for all rods that come off the assembly line. Round your answers to two decimal places.

13.6,13.8,14.1,13.6,13.3,13.5,13.9,13.3,14.1

Respuesta :

Answer:

99% confidence interval for the population standard deviation = (0.17 , 0.75).

Step-by-step explanation:

We are given that the following sample of lengths was taken from 9 rods off the assembly line;

13.6, 13.8, 14.1, 13.6, 13.3, 13.5, 13.9, 13.3, 14.1

So, firstly the pivotal quantity for 99% confidence interval for the population standard deviation is given by;

        P.Q. = [tex]\frac{(n-1)s^{2} }{\sigma^{2} }[/tex] ~ [tex]\chi^{2} __n_-_1[/tex]

where, s = sample standard deviation

           [tex]\sigma[/tex] = population standard deviation

           n = sample of rods = 9

Also, [tex]s^{2} = \frac{\sum (X-\bar X)^{2} }{n-1}[/tex] , where X = individual data value

                                             [tex]\bar X[/tex] = mean of data values = 13.7

       [tex]s^{2}[/tex] = 0.094

So, 99% confidence interval for population standard deviation, is;

P(1.344 < [tex]\chi^{2} __8[/tex] < 21.95) = 0.99 {As the table of [tex]\chi^{2}[/tex] at 8 degree of freedom

                                              gives critical values of 1.344 & 21.95}

P(1.344 < [tex]\frac{(n-1)s^{2} }{\sigma^{2} }[/tex] < 21.95) = 0.99

P( [tex]\frac{ 1.344}{(n-1)s^{2} }[/tex] < [tex]\frac{1 }{\sigma^{2} }[/tex] < [tex]\frac{ 21.95}{(n-1)s^{2} }[/tex] ) = 0.99

P( [tex]\frac{ (n-1)s^{2}}{21.95 }[/tex] < [tex]\sigma^{2}[/tex] < [tex]\frac{ (n-1)s^{2}}{1.344 }[/tex] ) = 0.99

99% confidence interval for [tex]\sigma^{2}[/tex] = ( [tex]\frac{ (n-1)s^{2}}{21.95 }[/tex] , [tex]\frac{ (n-1)s^{2}}{1.344 }[/tex] )

                                                  = ( [tex]\frac{ (9-1)\times 0.094}{21.95 }[/tex] , [tex]\frac{ (9-1)\times 0.094}{1.344 }[/tex] )

                                                  = (0.03 , 0.56)

99% confidence interval for [tex]\sigma[/tex] = ( [tex]\sqrt{0.03}[/tex] , [tex]\sqrt{0.56}[/tex] )

                                                 = (0.17 , 0.75)

Therefore, 99% confidence interval for the population standard deviation for all rods that come off the assembly line is (0.17 , 0.75).