Answer:
26 degree
Step-by-step explanation:
We are given that in triangle
[tex]\angle NLM=(x+1)^{\circ}[/tex]
[tex]\angke LMN=(x+15)^{\circ}[/tex]
[tex]\angle MNO=(4x+6)^{\circ}[/tex]
[tex]\angle MNO+\angle MNL=180^{\circ}[/tex]
By using linear pair angles property
[tex]\angle MNL=180-\angle MNO=180-(4x+6)[/tex]
[tex]\angle MNL+\angle NLM+\angle LMN=180^{\circ}[/tex]
By using triangle angles sum property
[tex]180-(4x+6)+x+15+x+1=180[/tex]
[tex]2x+16=180-180+4x+6[/tex]
[tex]16-6=4x-2x=2x[/tex]
[tex]2x=10[/tex]
[tex]x=\frac{10}{2}=5[/tex]
Substitute the value
[tex]\angle MNO=4(5)+6=20+6=26^{\circ}[/tex]