Which expression represents the distance between point (0, a) and point (a, 0) on a coordinate grid?
StartRoot 2 a squared EndRoot
StartRoot a Superscript 4 Baseline EndRoot
StartRoot 2 a Superscript 4 Baseline EndRoot
0

Respuesta :

Answer:

[tex]\sqrt{2a^2}[/tex]

Step-by-step explanation:

The distance between two points (x₁ , y₁) and (x₂ , y₂) is d

[tex]d= \sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]

For the given points (0, a) and (a, 0)

Substitute at the previous equation

[tex]d=\sqrt{(a-0)^2+(0-a)^2}=\sqrt{a^2+a^2}=\sqrt{2a^2} =a\sqrt{2}[/tex]

So, the expression represents the distance between point (0, a) and point (a, 0) on a coordinate grid is StartRoot 2 a squared EndRoot ⇒[tex]\sqrt{2a^2}[/tex]

Answer:

A

Step-by-step explanation: