Respuesta :
Answer:
[tex]\sqrt{2a^2}[/tex]
Step-by-step explanation:
The distance between two points (x₁ , y₁) and (x₂ , y₂) is d
[tex]d= \sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]
For the given points (0, a) and (a, 0)
Substitute at the previous equation
[tex]d=\sqrt{(a-0)^2+(0-a)^2}=\sqrt{a^2+a^2}=\sqrt{2a^2} =a\sqrt{2}[/tex]
So, the expression represents the distance between point (0, a) and point (a, 0) on a coordinate grid is StartRoot 2 a squared EndRoot ⇒[tex]\sqrt{2a^2}[/tex]