The average rate of change of g(x) between x = 4 and x = 7 is 5/6 . Which statement must be true?
017)-0(4) =
017-4) 5
7-4 = ā
oli
917)
914)
5
6

Respuesta :

Answer:

[tex]\frac{5}{6}=\:\frac{g\left(7\right)-g\left(4\right)}{7-4}[/tex]  would be the correct statement.

Step-by-step explanation:

As we know that

Average rate of change = Change in output / Change in input    

                                        =  Δy  / Δx

                                        [tex]=\frac{y_{2} -y_{1}}{x_{2} -x_{1}}[/tex]

                                        [tex]=\frac{g(x_{2})-g(x_{1})}{x_{2}-x_{1}}[/tex]

                                         [tex]=\frac{g(7)-g(4)}{7-4}[/tex]                    

As the average rate of change of g(x) between x = 4 and x = 7 is 5/6.

so

[tex]\:Average\:rate\:of\:change\:=\:\frac{g\left(7\right)-g\left(4\right)}{7-4}[/tex]

                                  [tex]\frac{5}{6}=\:\frac{g\left(7\right)-g\left(4\right)}{7-4}[/tex]

Therefore, [tex]\frac{5}{6}=\:\frac{g\left(7\right)-g\left(4\right)}{7-4}[/tex]  would be the correct statement.                      

Answer: C on edge

Step-by-step explanation:

2022 papi chulo