Respuesta :
Answer:
[tex]\frac{5}{6}=\:\frac{g\left(7\right)-g\left(4\right)}{7-4}[/tex] would be the correct statement.
Step-by-step explanation:
As we know that
Average rate of change = Change in output / Change in input
= Δy / Δx
[tex]=\frac{y_{2} -y_{1}}{x_{2} -x_{1}}[/tex]
[tex]=\frac{g(x_{2})-g(x_{1})}{x_{2}-x_{1}}[/tex]
[tex]=\frac{g(7)-g(4)}{7-4}[/tex]
As the average rate of change of g(x) between x = 4 and x = 7 is 5/6.
so
[tex]\:Average\:rate\:of\:change\:=\:\frac{g\left(7\right)-g\left(4\right)}{7-4}[/tex]
[tex]\frac{5}{6}=\:\frac{g\left(7\right)-g\left(4\right)}{7-4}[/tex]
Therefore, [tex]\frac{5}{6}=\:\frac{g\left(7\right)-g\left(4\right)}{7-4}[/tex] would be the correct statement.