A 20.00-kg lead sphere is hanging from a hook by a thin wire 2.80 m long and is free to swing in a complete circle. Suddenly it is struck horizontally by a 5.00-kg steel dart that embeds itself in the lead sphere. What must be the minimum initial speed of the dart so that the combination makes a complete circular loop after the collision?

Respuesta :

Explanation:

It is known that motion of objects on a vertical is an example of non-uniform motion.

When an object is at the highest point of the circle then for crossing highest point the centripetal force balances the weight of the object.

Therefore,    [tex]\frac{mv^{2}}{r} = mg[/tex]

At the highest point of the circle, the minimum speed is as follows.

                 v = [tex]\sqrt{rg}[/tex]

                    = [tex]\sqrt{2.80 \times 9.8}[/tex]

                    = 5.23 m/s

As the sphere falls from highest to lowest point of circle as follows. According to the law of conservation of energy,

       [tex]K.E_{lowest} = K.E_{highest} + P.E_{highest}[/tex]

Expression for potential energy is as follows.

          [tex]P.E_{highest} = mgh[/tex]

where,    h = diameter of the circle (2r)

So,              [tex]P.E_{highest} = mgh[/tex]

                  [tex]P.E_{highest} = mg(2r)[/tex]

      [tex]\frac{1}{2}mu^{2} = \frac{1}{2}mv^{2} + mg(2r)[/tex]

where,    u = velocity at the lowest time

Hence, the above equation will be as follows.

               [tex]u^{2} = v^{2} + 4gr[/tex]

               u = [tex]\sqrt{v^{2} + 4gr}[/tex]

                  = [tex]\sqrt{(5.23)^{2} + (4 \times 9.8 \times 2.80)}[/tex]

                  = 11.71 m/s

The dart is embedded into bullet and the collision is inelastic. From the law of conservation of momentum,

       [tex]m_{2}v = (m_{1} + m_{2})u[/tex]

                v = [tex]\frac{(m_{1} + m_{2})u}{m_{2}}[/tex]

                   = [tex]\frac{(20 + 5) \times 11.71}{5}[/tex]

                   = [tex]\frac{292.75}{5}[/tex]

                   = 58.55 m/s

Thus, we can conclude that the minimum initial speed of the dart so that the combination makes a complete circular loop after the collision is 58.55 m/s.

After collision, the maximum speed of the dart will be "58.55 m/s".

Collision

According to the question,

Mass of lead sphere = 20.00 kg

Length of wire = 1.80 m

Mass of steel dart = 5.00 kg

We know the relation,

Maximum speed, v = [tex]\sqrt{rg}[/tex]

By substituting the values,

                                 = [tex]\sqrt{2.80\times 9.8}[/tex]

                                 = 5.23 m/s

By using law of conservation of energy,

→ [tex]K.E_{lowest} = K.E_{highest} + P.E_{highest}[/tex]

or,

→ [tex]P.E_{higher} = mgh[/tex]

                  = mg(2r)

         [tex]\frac{1}{2}[/tex]mu² = [tex]\frac{1}{2}[/tex]mv² + mg(2r)

Now,

→ u² = v² + 4gr

   u = [tex]\sqrt{v^2+4gr}[/tex]

      = [tex]\sqrt{(5.23)^2 +(4\times 9.8\times 2.80)}[/tex]

      = 11.71 m/s

By using conservation of momentum,

→ m₂v = (m₁ + m₂)u

or,

       v = [tex]\frac{(m_1+m_2)v}{m_2}[/tex]

By putting the values,

          =  [tex]\frac{(20+5)\times 11.71}{5}[/tex]

          = [tex]\frac{292.75}{5}[/tex]

          = 58.55 m/s

Thus the response above is correct.

Find out more information about collision here:

https://brainly.com/question/7694106